Synthesis and Crystal Structure of $\gamma-\mathrm{BaZrF}_{6}$

A. LE BAIL and A. M. MERCIER
Laboratoire des Fluorures, CNRS-URA 449, Faculté des Sciences, 72017 Le Mans Cedex, France

Received December 9, 1991; in revised form April 28, 1992; accepted April 30, 1992

Abstract

$\gamma-\mathrm{BaZrF}_{5}$ is obtained from hydrothermal synthesis in HF solution. It crystallizes in the monoclinic system, with space group $C 2 / c ; a=13.193(2), b=7.499(1)$, and $c=19.839(3) \AA ; \beta=91.69(1)^{\circ}$; and $Z=16$. The structure is determined from X-ray single crystal data, $R=0.016$ for 3390 unique observed reflections. Barium atoms are inserted between isolated $\left[\mathrm{ZrF}_{6}\right]_{n}^{2 n-}$ chains, built up from ZrF_{8} bicapped trigonal prisms, linked alternately by faces and opposite vertices. A site has been found partly occupied by probably a water molecule, leading to the estimated $\mathrm{BaZrF}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.04}$ formula for the studied crystal © 1992 Academic Press, Inc.

Introduction

Before this study, crystalline BaZrF_{6} was known to exist in low- and high-temperature modifications (α and β forms, respectively) (1). The structure of $\beta-\mathrm{BaZrF}_{6}$ (2) belongs to the RbPaF_{6} type (3), also adopted by α $\mathrm{PbSrF}_{6}, \alpha-\mathrm{SrZrF}_{6}$, and $\mathrm{EuZrF}_{6}(1,4)$; it is composed of ZrF_{8} dodecahedra connected by edges forming infinite chains linked by Ba^{2+} cations. The structure of $\alpha-\mathrm{BaZrF}_{6}$ (5) is built up from $\left[\mathrm{Zr}_{2} \mathrm{~F}_{12}\right]^{4-}$ complex anions resulting from the association of two monocapped trigonal prisms sharing an edge, linked by Ba^{2+} cations.

On the other hand, the $\mathrm{BaF}_{2}-\mathrm{ZrF}_{4}$ system is characterized by the coexistence of a large vitreous domain with numerous crystalline phases. For modeling the glass structures, advantage is generally taken of the knowledge of crystalline structures. Concerning the fluorozirconate glasses, the structure approaches were focused mainly on two nominal compositions: $\mathrm{BaZr}_{2} \mathrm{~F}_{10}$ and precisely
BaZrF_{6} [for a review see Ref. (6)]. In the latter case, the glass local structure was believed to be strongly related to those of α and $\beta-\mathrm{BaZrF}_{6}(7,8)$.

Investigation of the $\mathrm{BaF}_{2}-\mathrm{ZrF}_{4}-\mathrm{HF}_{\mathrm{aq}}$ system by hydrothermal synthesis led to a new BaZrF_{6} form that we called γ. This compound could be of some importance at least for the structure modeling of glasses, so its structure determination was undertaken.

Experimental

Transparent prismatic crystals of γ $\mathrm{BaZrF} \mathrm{F}_{6}$ were grown by hydrothermal synthesis. A fluoride glass (1.5 g) with nominal composition $\mathrm{BaZr}_{3} \mathrm{~F}_{14}$ (the same result was obtained from a mixture of the separated components BaF_{2} and ZrF_{4}), together with $5 \mathrm{~cm}^{3}$ of a HF 5 M solution, was introduced into a $15-\mathrm{cm}^{3}$ hermetic Teflon bucket, placed in a metallic container (Parr bomb). The bomb was heated at $200^{\circ} \mathrm{C}$ for 3 days and
then naturally cooled down; the maximal pressure was near 15 MPa (150 atm).

The thermal behavior was followed by DTA (Q1500D-MOM), DSC, and TG experiments (Perkin-Elmer DSC4 and TGS2, Ar gas stream), with a heating rate of $5^{\circ} \mathrm{C} \cdot$ min^{-1}. No thermal event could be detected on the DSC curve up to $500^{\circ} \mathrm{C}$; the X-ray powder pattern of the sample back at room temperature was unchanged. The DTA curve exhibited a weak endothermic event near $545^{\circ} \mathrm{C}$. The quenched product was undoubtly $\alpha-\mathrm{BaZrF}_{6}$ from its X-ray powder pattern, and this $\gamma \rightarrow \alpha$ transition is irreversible. At higher temperature, the reversible transition $\alpha \rightarrow \beta\left(565^{\circ} \mathrm{C}\right)$ and fusion ($T_{\mathrm{m}}=$ $570^{\circ} \mathrm{C}$) determined by Kawamoto and Sakaguchi (6) were confirmed. No mass loss was detected on the TG curve up to $450^{\circ} \mathrm{C}$.

Structure Determination

Single crystal X-ray data were collected on a Siemens AED-2 four-circle diffractometer from a translucent prismatic crystal. Lattice constants of the monoclinic cell were based on 30 reflections at $2 \theta \approx 30^{\circ}$. Conditions limiting possible reflections were consistent with the space groups $C 2 / c$ and $C c$. The structure was solved using direct methods from the EEES option of the SHELX76 program (9). A starting solution was obtained, with two Ba and two Zr atoms in general positions. Refinements of their atomic coordinates and isotropic thermal motion led to $R=0.156$. Ionic scattering factors for $\mathrm{Ba}^{2+}, \mathrm{Zr}^{4+}$, and F^{-}and anomalous dispersion terms were taken from the 'International Tables for X-Ray Crystallography" (10). Twelve fluorine atoms in general position were located from a Fourier difference synthesis. Further refinement of their atomic coordinates and isotropic thermal motion led to $R=0.039$. The residual decreased to $R=0.017$ when anisotropic thermal parameters were refined. At this stage, a Fourier difference synthesis evi-
denced a new site, the peak height being $2.7 \mathrm{e} \cdot \AA^{3}$ (the next most intense one being smaller than $1.2 \mathrm{e} \cdot \AA^{3}$). This peak was still there when using scattering factors for neutral instead of ionized atoms. As justified in the discussion, a water molecule was allowed to occupy partly the corresponding $0, y, \frac{1}{4} 4 e$ site; simultaneous refinement of the y coordinate, an isotropic thermal parameter, and the occupancy factor (in spite of 75% correlation with the latter) was found to be possible and led to the final residuals listed in Table I, which gives the conditions for X-ray data measurements and refinements. No significative improvement of these results was observed when using the noncentrosymmetrical Cc space group. Final atomic coordinates and temperature factors are listed in Table II. Selected bond lengths and angles are gathered in Table III. A listed of observed and calculated structure factors may be obtained on request to the authors.

Description of the Structure and Discussion

The structure of $\gamma-\mathrm{BaZrF}_{6}$ consists of infinite isolated $\left[\mathrm{ZrF}_{6}\right]_{n}^{2 n-}$ chains built up from ZrF_{8} distorted bicapped trigonal prisms linked alternately by faces and opposite vertices. These chains are stacked at four welldefined levels along the c axis. The z coordinates of the $\mathrm{Zr}(1)$ and $\mathrm{Zr}(2)$ zirconium atoms, which alternate along the chains, are near $\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$, and $\frac{7}{8}$ for both of them. At each level, a chain is parallel to the neighboring one. It appears (Fig. 1) that the $\left[\mathrm{ZrF}_{6}\right]_{n}^{2 n-}$ chains may point toward two directions: they are parallel to the [110] direction at levels $\frac{1}{8}$ and $\frac{7}{8}$, whereas they are parallel to the [1-10] direction at levels $\frac{3}{8}$ and $\frac{5}{8}$.

The environment of the two independent Zr atom sites is remarkably similar. The two ZrF_{8} bicapped trigonal prisms are quasirelated by a mirror in the plane defined by the face-sharing fluorine atoms (Fig. 2). The

TABLE I
Crystallographic Data for γ - BaZrF_{6}

Formula weight	342.54
Space group	C2/c
Z	16
Calculated density	4.64
Radiation	MoK α
Monochromator	Graphite
$\mu\left(\mathrm{mm}^{-1}\right), \mathrm{MoK} \alpha$	10.12
Crystal size (mm)	$0.21 \times 0.14 \times 0.10$
Lattice constants	
$a(\AA)$	13.193(2)
b (\AA)	7.499(1)
$c(\AA)$	19.839(3)
$\beta\left({ }^{\circ}\right)$	91.69(1)
$V\left(\AA^{3}\right)$	1961.9(6)
Scan type	$\omega-2 \theta$
T	$20^{\circ} \mathrm{C}$
Angular range ($2 \theta_{\text {max }}$)	70°
Standard reflections	2,4,4; -4,0,14; 2, -4,4
Min and max hkl	-21,0,0; 21,12,31
Data examined	4566
Absorption correction	Gauss method
Min and max transmission factors	0.270 .43
Unique reflections, $R_{\text {int }}$	4250, 0.024
Data retained [$I>3 \sigma_{(\mathrm{f})}$]	3390
Extinction correction, SHELX76	$2.5(1) \times 10^{-7}$
Weighting scheme	$w^{\prime}=1.00 /\left[\sigma^{2}\left(\left\|F_{0}\right\|\right)+0.00040 F_{0}^{2}\right]$
Discrepancy factors	$R=0.016 R_{w}=0.018$
Parameters refined	149
Max shift/e.s.d.	0.002
Max and min electron density in final Fourier difference map (e. \AA^{-3})	1.16,-1.09

distances between the $F(1), F(9)$, and $F(10)$ fluorine atom sites, involved in the facesharing, are unusually short: they range from 2.388(2) to $2.421(2) \AA$; all other F-F distances are larger than $2.51 \AA$. A clear difference between terminal (t) and bridging (b) fluorine atoms is observed in $\gamma-\mathrm{BaZrF}_{6}$: the $\mathrm{Zr}-\mathrm{F}_{1}$ distances range from $2.035(1)$ to $2.094(2) \AA$, whereas the $\mathrm{Zr}-\mathrm{F}_{1}$, ones range from 2.124(1) to 2.246(1) A.

The barium atoms environment may be defined by considering $\mathrm{Ba}-\mathrm{F}$ distances smaller than $3.06 \AA$, the next ones being larger than $3.30 \AA$. In this way, a $\left[\mathrm{Ba}(2) \mathrm{F}_{10}\right]$ pentagonal prism and a distorted $[\mathrm{Ba}(1)$
$\mathrm{F}_{11} \mathrm{O}_{\mathrm{w}}$] hexagonal cubooctahedron are recognized in Fig. 3. The main distortion of the hexagonal cubooctahedron is due to one of the $F(11)$ atoms being quite out of the cubooctahedron hexagonal section (near O_{w}). The subnetwork built up from [$\mathrm{Ba}(1)$ $\left.\mathrm{F}_{11} \mathrm{O}_{\mathrm{w}}\right]$ and $\left[\mathrm{Ba}(2) \mathrm{F}_{10}\right]$ polyhedra is tridimensional according to a complex corner-, edgeand face-sharing linkage which may be seen in Figs. 4, 5, and 6.

As the synthesis conditions could have led to some $\mathrm{F}-\mathrm{OH}$ substitutions and to the inclusion of water or even HF_{2} molecules, a valence bond analysis was performed. Results are given in Table IV; they are consis-

TABLE II
Atomic Coordinates, Isotropic Temperature Factors, and Anisotropic Thermal Parameters $U_{i j} \times 10^{4}$ with e.s.d.'s in Parentheses

Note. Vibrational $U_{i j}$ coefficients relate to the expression

$$
\begin{aligned}
& T=\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+\right.\right. l^{2} c^{* 2} U_{33} \\
&\left.\left.+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)\right] . \\
&{ }^{a} 4 e \text { position with refined occupancy } 0.15(1)
\end{aligned}
$$

tent with the proposed formula and particularly with the hypothesis of the water molecule O_{w} partly occupying a $0, y, \frac{1}{4}$ site. The $\mathrm{F}(11)$ valence shows a slight deficiency which could be compensated by hydrogen bonding with O_{w}. The nearest neighbors of
O_{w} are two $\mathrm{F}(11)$ atoms at $2.51 \AA$ (the next neighbors are at $2.62 \AA$) and the $\mathrm{F}(11)-\mathrm{O}_{w}-\mathrm{F}(11)$ angle is $85.2(6)^{\circ}$. The formula of the particular crystal studied here is estimated to be $\mathrm{BaZrF}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.04}$. It seems that $\gamma-\mathrm{BaZrF}_{6}$ free of the water molecule

TABLE III
Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ with e.s.d. s in Parentheses

Zirconium linkage

By face			
$\mathrm{Zr}(1)-\mathrm{Zr}(2)$	$3.377(1)$	$\mathrm{Zr}(1)-\mathrm{F}(1)-\mathrm{Zr}(2)$	97.6(1)
		$\mathrm{Zr}(1)-\mathrm{F}(9)-\mathrm{Zr}(2)$	104.7(1)
		$\mathrm{Zr}(1)-\mathrm{F}(10)-\mathrm{Zr}(2)$	$100.8(1)$
By corner			
$\mathrm{Zr}(1)-\mathrm{Zr}(2)$	4.212(1)	$\mathrm{Zr}(1)-\mathrm{F}(12)-\mathrm{Zr}(2)$	161.4(1)

could exist and we can remember that no mass loss could be detected during the TG experiment. Further IR measurements were not decisive about the presence of water,
representing less than 1% of the anions in the crystal studied. Nevertheless, the site partly occupied really exists in the structure. Thus, it may be that $\mathrm{BaZrF}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.25}$

Fig. 1. Stacking of the $\left[\mathrm{ZrF}_{6}\right]_{n}^{2 n-}$ infinite chains at four levels along the c axis in γ - $\mathrm{BaZrF}_{6} .90 \%$ probability ellipsoids-ORTEP drawing (II).
also could exist, with a full O_{w} site occupancy. To verify these hypotheses would require structure refinements applied on data from several crystals. Synthesis from more or less diluted HF solutions could have

Fig. 2. Atomic numbering scheme of the two facesharing ZrF_{8} bicapped trigonal prisms in γ - $\mathrm{BaZrF}_{6} .90 \%$ probability ellipsoids-ORTEP drawing (11).

some influence also on the exact formulation in such a case. Such results are not forthcoming; thus this study represents the best information currently available on this new phase.

Comparison of the crystallographic char-

Fig. 3. Coordination of the two barium atom sites in $\gamma-\mathrm{BaZrF}_{6} .90 \%$, probability ellipsoids-ORTEP drawing (11).

Fig. 4. $\mathrm{Ba}(1)-\mathrm{Ba}(2)$ linkage in $\gamma-\mathrm{BaZrF}_{6} ; \mathrm{Ow}^{2}$ shown as open circles. 90% probability ellipsoids-ORTF.P drawing ($1 /$).
acteristics of the three BaZrF_{5} forms is made in Table V. The γ form is the less dense. In spite of the possible water presence, γ BaZrF_{6} cannot be excluded in modeling the BaZrF_{6} glass structure since the volume per formula is $123.6 \AA^{3}$ in the glass (8).

Face sharing is unusual in fluorozirconates; however, two cases were recently identificd. Isolated $\mathrm{Zr}_{2} \mathrm{~F}_{13}^{5-}$ dimeric anions, formed by two ZrF_{8}^{4-} distorted bicapped trigonal prisms joined together through the

FiG. 5. $\mathrm{Ba}(1)-\mathrm{Ba}(1)$ linkage in $\gamma-\mathrm{BaZrF}_{6}:$ Ow shown as open circles. 90% probability ellipsoids-ORTEP drawing (1).

TABLE IV
Valence-Bund Analysis uF γ-BaZrF Using the Zachariasen L.aw for Ba-F and $\mathrm{Zr}-\mathrm{F}^{b}$ Bonds and the Brown-Shannon Inverse Power Law for the Ba-O* Bond

j / i	$\mathrm{Ba}(1)$	$\mathrm{Ba}(2)$	$\mathrm{Zr}(1)$	$\mathrm{Zr}(2)$	$\Sigma_{i} s_{i j}$
F(1)		0.16	0.35	0.36	1.02
		0.15			
$F(2)$	0.16	0.16	0.54		0.96
	0.10				
F(3)		0.22		0.59	1.02
		0.21			
F(4)	0.24			0.60	1.00
	0.16				
F(5)		0.22	0.60		1.00
		0.18			
$F(6)$	0.26		0.57		1.08
	0.25				
$F(7)$	0.16	0.21	0.59		0.96
$\mathrm{F}(8)$	0.19	0.23		0.58	1.00
F(9)		0.02	0.47	0.47	0.96
F(10)	0.23	0.02	0.41	0.40	1.06
F(11)	0.12	0.13		0.52	0.87
	0.10				
F(12)	0.04	0.05	0.46	0.48	1.03
O(w)	0.20×2				0.40
	$\times 0.15$				
$\sum_{i} s_{i j}$	2.04	1.96	3.99	4.00	

$\left.\left.{ }^{a} s_{i j}=0.25 \exp \mid\left(2.685-d_{i j}\right) / 0.391\right)\right]([4)$.
$\left.{ }^{n} s_{i j}=\operatorname{expl}-\left(d_{i j}-1.83\right) / 0.4\right]$ (15).
${ }^{\prime} s_{i j}-\left(d_{i j} / d_{0}\right){ }^{\prime}$. with $d_{0}=2.297$ and $N-7$ (16).

Tig. 6. $\mathrm{Ba}(2)-\mathrm{Ba}(2)$ linkage in $\gamma-\mathrm{BaZrF}_{\mathrm{t}}$ 9n $\%$ proba bility ellipsoids-ORTEP drawing (I/).

TABLE V
Crystallographic Characteristics of BaZrF_{6} Phases

	Space group	a	b	c	β	Z	V / Z	Ref.
α	$P 2_{1} / c$	$6.493(2)$	$9.530(3)$	$9.203(3)$	$127.09(7)$	4	113.56	(6)
β	$C m m a$	$7.632(4)$	$11.406(6)$	$5.470(3)$		4	119.04	(3)
γ	$C 2 / c$	$13.193(2)$	$7.499(1)$	$19.839(3)$	$91.69(1)$	16	122.62	This work

common face of the cap, were evidenced in $\left(\mathrm{N}_{2} \mathrm{H}_{6}\right)_{3} \mathrm{Zr}_{2} \mathrm{~F}_{13} \cdot \mathrm{~F}$ (12). There is a great similitude between these $\mathrm{Zr}_{2} \mathrm{~F}_{13}^{5-}$ isolated dimeric anions and those connected in γ BaZrF_{6} from the point of view of distances, angles, and topology. Even the short $\mathrm{Zr}-\mathrm{Zr}$ distance, through face sharing, is very similar: $3.374 \AA$ in $\left(\mathrm{N}_{2} \mathrm{H}_{6}\right)_{3} \mathrm{Zr}_{2} \mathrm{~F}_{13} \cdot \mathrm{~F}$ and 3.377 \AA in $\gamma-\mathrm{BaZrF}_{6}$. Very different are the other known $\mathrm{Zr}_{2} \mathrm{~F}_{13}^{5-}$ dimeric anions in $\left(\mathrm{NH}_{4}\right)_{2-}$ ZrF_{6} (13). They are also built from bicapped ZrF_{8} trigonal prisms sharing a face and they are connected by opposite vertices to form infinite $\left[\mathrm{ZrF}_{6}\right]_{n}^{2 n-}$ chains as in $\gamma-\mathrm{BaZrF}_{6}$. However, the eight fluorine atoms quasi-related by a mirror passing through the common face in $\gamma-\mathrm{BaZrF}_{6}$ (namely $F(2), F(5), F(6)$, and $F(7)$ related, respectively, to $F(11), F(3), F(4)$, and $\mathrm{F}(8)$ in Fig. 2) form an antiprism in $\left(\mathrm{NH}_{4}\right)$ ${ }_{2} \mathrm{ZrF}_{6}$. Moreover, the short $\mathrm{Zr}-\mathrm{Zr}$ distance ($3.481 \AA$) through the common face is quite a bit longer in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZrF}_{6}$ than in $\gamma-\mathrm{BaZrF}_{6}$.

A reconsideration of the current view of the BaZrF_{6} glass structure could now be necessary. Until the recent publication of the $\left(\mathrm{N}_{2} \mathrm{H}_{6}\right)_{3} \mathrm{Zr}_{2} \mathrm{~F}_{13} \cdot \mathrm{~F}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZrF}_{6}$ crystal structures (12, 13), face sharing was unknown, to our knowledge, in the fluorozirconate crystal chemistry. This linkage mode was never considered possible for the glasses. Moreover, face sharing does not seem to occur spontaneously in molecular dynamic simulation of the fluorozirconate glass structures [for a review see Ref. (17)]. Thus a question arises now about the possibility that ZrF_{8} face-sharing polyhedra occur in fluorozirconate glasses.

Acknowledgment

The authors are grateful to Professor M. Leblanc (University of Maine) for the X-ray data collection.

References

1. J. P. Laval, D. Mercurio-Lavaud, and B. Gaudreau, Rev. Chim. Miner. 11, 742 (1974).
2. B. Mehlhorn and R. Hoppe, Z. Anorg. Allg. Chem. 425, 180 (1976).
3. J. H. Burns, H. A. Levy, and O. L. Keller, Acta Crystallogr. B 24, 1675 (1968).
4. Y. Kawamoto and F. Sakaguchi, Bull. Chem. Soc. Jpn. 56, 2138 (1983).
5. J. P. Laval, R. Papiernik, and B. Fhit, Acta Crystallogr. B 34, 1070 (1978).
6. P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, "Fluoride Glass Optical Fibres," Blackie, Glasgow/London (1990).
7. Y. Kawamoto and T. Horisaka, J. Non-Cryst. Solids 56, 39 (1983).
8. Y. Kawamoto, T. Horisaka, K. Hirao, and N. SAGA, J. Chem. Phys. 83, 2398 (1985).
9. G. M. Sheldrick, 'SHELX76: A Program for Crystal Structure Determination," Cambridge Univ. Press, London (1976).
10. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch, Birmingham (1974).
11. C. K. Johnson, "ORTEP,'" Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN (1965).
12. A. Rahten, I. Leban, S. Milicev, and B. Zemva, J. Crystallogr. Spectrosc. Res. 20, 9 (1990).
13. A. Zalkin, D. Eimerl, and S. P. Velsko, Acta Crystallogr. C 44, 2050 (1988).
14. G. Ferey, M. Leblanc, A. de Kozak, M. Samouël, and J. Pannetier, J. Solid State Chem. 56, 288 (1985).
15. I. Mansouri and D. Avignant, J. Solid State Chem. 51, 91 (1984).
16. I. D. Brown, in "Structure and Bonding" (M. O'Keefe and A. Navrotsky, Eds.), Vol. II, pp. 1-29, Academic Press, New York (1981).
17. C. C. Phifer, C. A. Angell, J. P. Laval, and J. Lucas, J. Non-Cryst. Solids 94, 315 (1987).
